Structural Biology Using Electrons and X-Rays discusses the diffraction and image-based methods used for the determination of complex biological macromolecules. The book focuses on the Fourier transform theory, which is a mathematical function that is computed to transform signals between time and frequency domain. Composed of five parts, the book examines the development of nuclear magnetic resonance (NMR), which allows the calculation of the images of a certain protein. Parts 1 to 4 provide the basic information and the applications of Fourier transforms, as well as the different methods used for image processing using X-ray crystallography and the analysis of electron micrographs. Part 5 focuses entirely on the mathematical aspect of Fourier transforms. In addition, the book examines detailed structural analyses of a specimen’s symmetry (i.e., crystals, helices, polyhedral viruses and asymmetrical particles). This book is intended for the biologist or biochemist who is interested in different methods and techniques for calculating the images of proteins using nuclear magnetic resonance (NMR). It is also suitable for readers without a background in physical chemistry or mathematics. Emphasis on common principles underlying all diffraction-based methods Thorough grounding in theory requires understanding of only simple algebra Visual representations and explanations of challenging content Mathematical detail offered in short-course form to parallel the text
More Books:
Language: en
Pages: 450
Pages: 450
Structural Biology Using Electrons and X-Rays discusses the diffraction and image-based methods used for the determination of complex biological macromolecules. The book focuses on the Fourier transform theory, which is a mathematical function that is computed to transform signals between time and frequency domain. Composed of five parts, the book
Language: en
Pages: 434
Pages: 434
Books about Structural Biology Using Electrons and X-rays
Language: en
Pages: 480
Pages: 480
Illustrates the Complex Biochemical Relations that Permit Life to Exist It can be argued that the dawn of the 21st century has emerged as the age focused on molecular biology, which includes all the regulatory mechanisms that make cellular biochemical reaction pathways stable and life possible. For biomedical engineers, this
Language: en
Pages: 560
Pages: 560
This volume demonstrates how cellular and associated electron microscopy contributes to knowledge about biological structural information, primarily at the nanometer level. It presents how EM approaches complement both conventional structural biology (at the high end, angstrom level of resolution) and digital light microscopy (at the low end, 100-200 nanometers). *Basic
Language: en
Pages: 545
Pages: 545
Biomedical Applications of Microprobe Analysis is a combination reference/laboratory manual for the use of microprobe analysis in both clinical diagnostic and research settings. Also called microchemical microscopy, microprobe analysis uses high-energy bombardment of cells and tissue, in combination with high resolution EM or confocal microscopy to provide a profile of